INTRODUCTION

- Tebipenem (SPR859) is a carbapenem that is active against a range of Enterobacteriaceae with a variety of resistance mechanisms. Tebipenem is the microbiologically active form of an orally administered pivalox pro-drug SPR949, that is currently under development for complicated urinary tract infections (cUTI).
- The pharmacokinetic and pharmacodynamics (PK-PD) of tebipenem has been well characterised in the neutropenic mouse thigh model of infection, and the PK driver is best described by AUC/MIC*1/Tau.
- Here, further work in a hollow fibre infection model is described to support the identification of PK index and magnitude that best links drug exposure with antibacterial efficacy for multidrug resistant Enterobacteriaceae.

METHODS

Hollow Fibre Infection Model

- An ESBL-producing *Escherichia coli* (SPT719) with a tebipenem MIC of 0.03 mg/L was used as the challenge strain. Active drug (tebipenem) was used for all experiments.
- The simulated PK profile was based on Phase I human PK data.
- Dose ranging studies were performed to identify informative parts of the exposure-response relationships.
- Bacterial killing and the emergence of resistance were used as experimental endpoints, using drug-free Mueller Hinton agar and drug containing agar with a concentration of active drug of 0.125 mg/L.
- Dose fractionation studies were performed using an isodos experiment with q6h, q8h, q12h and q24h schedules of administration.
- The pharmacokinetic and pharmacodynamic PK-PD data were modelled using a population methodology to identify drug exposures that resulted in bacterial killing and the emergence of resistance.

RESULTS

- The MIC of tebipenem against SPT719 was 0.03 mg/L. The fT>MIC for each regimen ranged from 28% to 100%. More fractionated regimens produced more antibacterial effect and suppressed the emergence of resistance. Logarithmic killing and the prevention of emergence of resistance was achieved with a fT>MIC 54-76%.

<table>
<thead>
<tr>
<th>Bacterium</th>
<th>Notes</th>
<th>Test Article</th>
<th>Mode MIC (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli strain SPT-719</td>
<td></td>
<td>SPR859 (tebipenem)</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>ESBL+</td>
<td>Ertapenem</td>
<td>0.125</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meropenem</td>
<td>0.03</td>
</tr>
</tbody>
</table>

CONCLUSIONS

- SPR859 exhibits time-dependent pharmacodynamics for both bacterial killing and the prevention of emergence of resistance.
- The pharmacodynamic targets in the hollow fibre infection model are comparable to those estimated from murine models.
- These data will be used to identify optimal dosing regimens for patients with cUTI.