Introduction

- Gram-negative bacteria producing extended-spectrum β-lactamase (ESBL) and/or carbapenemase enzymes that show resistance to many antibiotics have been steadily increasing to alarming levels in hospital and community settings.
- SPR206 is a next-generation polymyxin compound being developed for treating infections caused by gram-negative pathogens (Figure 1).
- This study evaluated the in vitro potency of SPR206 and compared its potency to those of carbapenems and colistin against Enterobacteriaceae, including carbapenem-resistant (CRE) organisms.

Figure 1 Structure of SPR206

Materials and Methods

Bacterial isolates

- A total of 541 recent clinical Enterobacteriaceae isolates (2016–2017) were randomly selected through the SENTRY Antimicrobial Surveillance Program from 150 medical centers worldwide.
- Isolates were resistant to bloodstream (30%), urinary tract (26%), pneumonia (20%), skin and skin structure (15%), and other infections (9%).
- Drug activities were also investigated against an independent challenge set of 52 CRE isolates (Table 1).
- Isolates were determined to be clinically significant based on local guidelines and submitted to a central monitoring laboratory (JMI Laboratories, North Liberty, Iowa).
- Bacterial isolate identification was performed by standard algorithms supported by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (Bruker Daltonics, Bremen, Germany).

Antimicrobial susceptibility testing

- Isolates were tested for susceptibility by broth microdilution following guidelines in the CLSI M07 (2018) document.
- Frozen-foam reference 96-well plates manufactured by JMI Laboratories were used in testing.
- Breakpoint criteria for comparator agents were from the CLSI M100 (2018) and EUCAST (2018) documents.

Results

- SPR206 (MIC₉₀ 0.006/0.12 mg/L) was more potent than colistin and polymyxin B (MIC₉₀ 0.25/0.25 mg/L).
- SPR206 showed 93.2% of all Enterobacteriaceae at ≤0.12 mg/L, while colistin and polymyxin B inhibited 38.3% and 35.7%, respectively, at ≤0.12 mg/L (Table 1).
- SPR206 had an MIC₅₀ of 52 mg/L against Enterococcus, Citrobacter, Salmonella, and Shigella species (Table 1).
- Ceftriaxone displayed a broad spectrum of activity against CRE isolates (MIC ≤0.12≤8 mg/L) against all Enterobacteriaceae isolates and 77.4% were susceptible at the CLSI and EUCAST breakpoints of ≤1 mg/L.
- Meropenem was active (MIC ≤0.12≤0.5 mg/L) against these isolates and 97.9% were susceptible at the CLSI/EUCAST breakpoints of ≤1 mg/L.
- SPR206 showed increased MIC values for strains isolated from infections (9%).

Conclusions

- Overall, SPR206 was highly potent against a contemporary collection of Enterobacteriaceae isolates.
- Based on MIC₉₀ results, SPR206 potency was consistently 2- to 4-fold greater than the potency of colistin and polymyxin B.
- Against a challenge set of isolates with increased carbapenem MIC values:
 - SPR206 MIC results were not adversely affected when compared with the MIC values obtained against randomly selected organisms.
 - SPR206 MIC values were consistently lower than colistin and polymyxin B.
- These in vitro results obtained for SPR206 warrant its further development as an option for treating gram-negative infections.

Acknowledgements

This project has been funded in whole or in part with federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under Contract No. HHSN272201500014C. This study was supported by Spero Therapeutics. JMI Laboratories received compensation for services related to preparing this poster.

Table 1 Antimicrobial activity of SPR206 and comparators tested against the main organisms and groups

<table>
<thead>
<tr>
<th>Organism group (no. of isolates)</th>
<th>No. and cumulative % of isolates at MIC (μg/mL) of SPR206 (MIC<sub>90</sub>)</th>
<th>MIC<sub>90</sub></th>
<th>MIC<sub>50</sub></th>
<th>MIC<sub>25</sub></th>
<th>EUCAST<sup>5</sup> %<sup>5</sup></th>
<th>MIC<sub>90</sub></th>
<th>MIC<sub>50</sub></th>
<th>MIC<sub>25</sub></th>
<th>EUCAST<sup>5</sup> %<sup>5</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterobacteriaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colistin</td>
<td></td>
<td>0.5</td>
<td>0.25</td>
<td>0.12</td>
<td>96.4</td>
<td>0.5</td>
<td>0.25</td>
<td>0.12</td>
<td>96.4</td>
</tr>
<tr>
<td>Polymyxin-B</td>
<td></td>
<td>0.5</td>
<td>0.25</td>
<td>0.12</td>
<td>96.4</td>
<td>0.5</td>
<td>0.25</td>
<td>0.12</td>
<td>96.4</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td></td>
<td>0.12</td>
<td>0.06</td>
<td>0.03</td>
<td>94.7</td>
<td>0.12</td>
<td>0.06</td>
<td>0.03</td>
<td>94.7</td>
</tr>
<tr>
<td>Meropenem</td>
<td></td>
<td>0.5</td>
<td>0.25</td>
<td>0.12</td>
<td>96.4</td>
<td>0.5</td>
<td>0.25</td>
<td>0.12</td>
<td>96.4</td>
</tr>
</tbody>
</table>

References

Figure 2 Comparison of colistin to SPR206 when tested against 573 Enterobacteriaceae isolates

Figure 3 Comparison of polymyxin-B to SPR206 when tested against 573 Enterobacteriaceae isolates

Figure 4 Comparison of carbapenems to SPR206 when tested against 573 Enterobacteriaceae isolates

*The intensity of shading is proportional to the number of isolates within each MIC range that display the indicated MIC value.

- Greater than the highest concentration tested.
- OXA-48 carbapenem-resistant Enterobacteriaceae (CRE) isolates: 1 bla^b-OXA-48, 1 bla^b-OXA-48, 1 bla^b-OXA-48, and 1 bla^b-OXA-48.
- CRE: carbapenem-resistant Enterobacteriaceae (CRE) isolates: 1 bla^b-OXA-48, 1 bla^b-OXA-48, 1 bla^b-OXA-48, and 1 bla^b-OXA-48.