A Pharmacokinetic-Pharmacodynamic Evaluation of the Novel Antibiotic Potentiatior, SPR741, In Combination With Piperacillin/Tazobactam Against Enterobacteriaceae

Institute for Clinical Pharmacology, Inc., Schenectady, NY, USA; Bioes Therapeutics, Cambridge, MA, USA

INTRODUCTION
Antimicrobial resistance has become one of the largest threats to global health.

SP-9A, a novel polymyxin B derivative with minimal innate antibacterial activity and reduced non-clinical nephrotoxicity, acts as a potentator when administered in combination with antibiotics against Gram-negative pathogens.

Hence, we describe a series of 24- and 48-hour one-compartment in vitro studies designed to activate a series of antibiotics in a manner that mimics administration in combination with antibiotics against Gram-negative pathogens.

Herein, we describe a series of 24- and 48-hour one-compartment in vitro studies designed to activate a series of antibiotics in a manner that mimics administration in combination with antibiotics against Gram-negative pathogens.

METHODS

Ampicillin and Ceftriaxone Isolates

Ampicillin (ampicillin) and Ceftriaxone (ceftriaxone) are antibiotics used in combination to treat infections caused by Gram-negative bacteria. These antibiotics are often used in clinical settings as a synergistic therapy to overcome bacterial resistance.

Beta-Lactamases

Beta-lactamases are enzymes produced by bacteria that can inactivate beta-lactam antibiotics, leading to treatment failures. Ampicillin, for instance, can be inactivated by these enzymes, making it ineffective against certain bacterial strains.

Susceptibility Testing

Susceptibility testing is a method used to determine the sensitivity of a bacterial isolate to different antibiotics. This involves exposing the bacteria to varying concentrations of antibiotics and measuring the growth inhibition.

RESULTS

Pharmacokinetic-Pharmacodynamic Analysis

Data from the dose-ranging studies were pooled and evaluated using PK/PD models and non-linear least squares regression.

The relationship between change in log CFU/ml from baseline at 24 hours and the free-drug ratio of the area under the concentration-time curve to the MIC (AUC/MIC) was determined for the SPR741/AUC/MIC value of each challenge isolate as described in the susceptibility study, and was evaluated.

Once the pharmacokinetic-pharmacodynamic (PK/PD) relationship that best described the activity of SPR741 in combination with PIP/TAZ was identified, the SPR741 free-drug AUC/MIC values determined with non-linear least squares regression and logistic regression are shown.

Table 1: Known resistance mechanisms and susceptibility results of the challenge isolates evaluated in this one-compartment in vitro infection model.

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Minimum Inhibitory Concentration (MIC)</th>
<th>MIC Value (μg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. aeruginosa</td>
<td>>2</td>
<td>0.1</td>
</tr>
<tr>
<td>E. coli</td>
<td>>2</td>
<td>0.1</td>
</tr>
</tbody>
</table>

CONCLUSIONS
The use of dose-ranging and susceptibility studies conducted using the one-compartment in vitro models demonstrated that SPR741 enhanced the effectiveness of PIP/TAZ against drug-resistant isolates.

ACKNOWLEDGMENTS
This research was supported by the National Institute of Allergy and Infectious Diseases (NIAID) under contract HHSN266201400012C. The content is the responsibility of the authors and does not necessarily reflect the position or the official policy of the U.S. Department of Health and Human Services or NIAID. The authors would like to thank the following individuals for their contributions:

REFERENCES

Figure No. 1: CARB-X 8R4

Figure No. 2: ICPD 8R4